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Signal-to-noise ratio gain in neuronal systems
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We explore the possibility of a signal-to-noise ratio~SNR! gain both in a single neuron and a neuronal
network. In the presence of a weak sinusoidal or pulse signal and Gaussian noise, the output SNR can exceed
the input SNR over a wide range of noise intensities. The high output SNR and SNR gain can be acquired
coincidentally at optimal noise levels. The results further verify that noise can play a constructive role in
sensory processing in neuronal systems.
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The response of nonlinear systems to weak perio
stimuli and noise is known to exhibit cooperative effec
including stochastic resonance~SR!. SR is a nonlinear phe
nomenon wherein the output signal-to-noise ratio~SNR! can
be optimized by a particular level of noise@1#. SR has been
investigated in a wide variety of nonlinear systems, es
cially in neuronal systems. It was demonstrated that no
can play an active role in signal processing. However,
other significant issue has received less attention, nam
whether it is possible to make the signal detectability at
output exceed that at the input in a suitably optimized n
linear system. This is important for practical applicatio
of SR.

It was proven theoretically that the output SNR can ne
exceed the input SNR if nonlinear systems perform in
linear response limit~e.g., under the conditions where th
signal amplitude is much smaller than the noise strength
bistable systems! @2#. On the other hand, a SNR gain h
been observed in electronic analog circuits@3#, an optically
bistable element@4#, a level-crossing detector@5#, a rf super-
conducting quantum interference device loop@6#, and a static
nonlinear transfer@7#, etc., all working in the nonlinear re
sponse regime. But to our knowledge, it has not been c
fied whether it is possible to obtain enhanced signal det
ability in neuronal systems in the presence of Gauss
noise. If a noisy signal can become less noisy after transd
tion by neurons, their signal-processing capability will
largely improved.

Motivated by the aforementioned considerations, we
plore the possibility of SNR gain both in a single neuron a
a neuronal network. It is demonstrated that the SNR
provement effect occurs in both cases, especially more
markable in the network case, in the presence of a w
periodic signal and Gaussian noise.

We begin with the Hodgkin-Huxley~HH! neuronal
model, whose dynamics is described as follows:

Cm

dV

dt
52gNa

m3h~V2VNa
!2gKn4~V2VK!

2gl~V2Vl !1I 01s~ t !1h~ t !, ~1!

dm

dt
5

m`~V!2m

tm~V!
, ~2!
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dh

dt
5

h`~V!2h

th~V!
, ~3!

dn

dt
5

n`~V!2n

tn~V!
. ~4!

HereV, m, h, andn are the membrane potential, the activ
tion and inactivation of the sodium current, and the activ
tion of the potassium current, respectively.gNa

, gK , andgl

are the maximal values of conductance of the sodium, po
sium, and leakage currents;VNa

, VK , andVl are the corre-

sponding reversal potentials.Cm is the capacity of the mem
brane. The parameter values@8# are VNa

550 mV, VK

5277 mV, Vl5254.4 mV, gNa
5120 mS/cm2, gK

536 mS/cm2, gl50.3 mS/cm2, and Cm51 mF/cm2. The
functions m`(V), h`(V), n`(V), tm(V), th(V), and
tn(V) are given by x`(V)5ax /(ax1bx) and tx(V)51/
(ax1bx) with x5m,h,n. That is, am50.1(V140)/
(12e2(V140)/10), bm54e2(V165)/18, ah50.07e2(V165)/20,
bh51/(11e2(V135)/10), an50.01(V155)/(12e2(V155)/10),
andbn50.125e2(V165)/80.

We assume that the neuron is subject to a subthres
signal,s(t)5A cos(2pfst) plus a constant biasI 0, as well as
a Gaussian noiseh(t) satisfying

^h~ t !&50, ^h~ t1!h~ t2!&5Dle2lut12t2u. ~5!

HereD represents noise intensity andl is the inverse of the
correlation time.h(t) is taken as the white noise~i.e., l21

equals to the integration step, 500/32 768 ms! throughout the
paper, otherwise specified elsewhere. The numerical me
for solving Eqs.~1!–~4! is based on a second-order algorith
proposed in Ref.@9#. An average over 100 different realiza
tions of noise seeds is always taken to obtain final result

Note that a spike occurs whenV(t) exceeds220 mV. In
our simulations the time course ofV(t) is converted into a
time series of standard pulsesU(t) with UH51 of width 2
ms andUL50 corresponding, respectively, to the firing an
nonfiring states. We use the fast Fourier transform to co
pute the power spectral density of signals. The SNR is
fined as 10 log10(G/B) with G and B representing, respec
tively, the height of the signal peak and the mean amplitu
of background noise at the input signal frequencyf s in the
©2001 The American Physical Society12-1
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power spectrum@10#. The SNR for the inputs(t)1h(t) and
the outputU(t) is simply denoted asg in andgu . gu repre-
sentsgu2g in .

Figure 1~a! showsg in andgu versus the noise intensityD
in the case off s570 Hz. Clearly,g in decreases monoton
cally with increasingD. Differently, gu first rises up to a
maximum aroundDm51.5 and then drops asD increases,
exhibiting the typical characteristic of SR. In addition,gu is
first smaller and then larger thang in , as seen in the inset o
Fig. 1~a!. gu is negative whenD,1 and becomes positive i
D.1. gu also first rises but then drops much more slow
with increasingD, with a maximum of 3.7 dB aroundDc
53. This indicates that the output SNR can exceed the in
SNR over a wide range of noise intensities. Note thatgu is
larger atDm than atDc by 1.2 dB whilegu is larger atDc
than atDm by 1.8 dB. Therefore, the neuron can acquire
large output SNR as well as a high SNR gain at optim
noise levels (Dm<D<Dc). This can largely contribute to
weak signal detection and transduction in neuronal syste

In the case of low noise level, the firings of the neuron
often separated by several driving cycles owing to the sm
effective stimulus strength. This leads to a small value ofgu .
As D rises, the firing rate increases and the correlation
tween the firing and the periodic signal is enhanced. T
neuron discharges spikes around the maxima of the si

FIG. 1. ~a! The SNR vs the noise intensityD for the case of
f s570 Hz andA51. The biasI 0 is taken as 1 throughout th
paper. The inset isgu vs D. ~b! gu vs l for D52 and 10. The inset
is gu vs the signal amplitudeA for D51 and 10.
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although there still exists the skipping in firing. Thus,gu
quickly rises and reaches its maximum. AsD further in-
creases, while the neuron fires more frequently, the co
ence of the firing with the signal decays gradually.gu thus
drops remarkably. On the other hand, the increase ofD al-
ways diminishes the order in the input since it is a line
summation of the signals(t) and the noiseh(t). Thus,g in
drops monotonically with increasingD. But g in has a much
larger value thangu for low noise level. In the case of high
noise level, the periodic signal may be nearly submerged
the noise, whereas the output still contains prominent p
odic components since the firing is modulated by the sign
As a result,gu is larger thang in over a wide range of noise
intensities.

It is worth noting that the SNR gain is closely related
the correlation properties of input noise. Figure 1~b! depicts
gu versusl for D52 and 10. Obviously,gu rises with in-
creasingl but is negative whenl<30. In fact,g in decreases
remarkably whilegu varies slightly asl rises. g in drops
monotonically with increasingl because the correlation i
the noise diminishes. For smalll the firing exhibits an evi-
dent coherence with the signal, while for largel the firing
rate rises slightly but the firing coherence with the sign
becomes weak. This makesgu change slightly. The resul
implies that a high SNR gain can be obtained if the inp
noise has a high cutoff frequency. In addition, when the s
nal amplitudeA increases~at fixed noise intensity!, bothg in
and gu rise, while the SNR gain first rises and then drop
@For low noise level (D,2), gu first drops for weak signa
driving before it increases.# This is clearly seen in the inse
of Fig. 1~b!. It is noted thatgu can also be positive for the
suprathreshold signals~i.e., A.Ath51.38), although no SR
effect occurs therein.

We also investigate the responses of the neuron to var
sinusoidal signals with the identical amplitude. Figure 2~a!
showsgu versus the signal frequencyf s for D52 and 10.
Clearly, gu has relatively large values for signals with fre

FIG. 2. ~a! gu and~b! gu vs the signal frequency forD52 and
10. For each frequency the signal amplitude isA51.
2-2
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quencies in the range of 40;90 Hz. That is, the neuron i
more sensitive to these signals. Such frequency sensitivi
more remarkable for low noise level and results from
resonance between the periodic signal and the subthres
intrinsic oscillation. The physical argument for this has be
presented in Ref.@11#. Figure 2~b! plotsgu versusf s . Obvi-
ously, for D52, gu takes a positive value for 40< f s
,100 Hz, while for D510, gu is positive for each fre-
quency considered here except forf s520 Hz. In the case of
small noise level, the neuron fires rarely for high signal f
quency, or the firing exhibits a weak coherence with
signal for low signal frequency. These lead to a small va
of gu as well as a negative value ofgu for low and high
signal frequency sinceg in is much larger. For high noise
level g in becomes far smaller, whileU(t) still contains the
periodic components and displays a coherent activity. Th
gu has a positive value. In addition,gu also takes large val
ues for signals with 40< f s<90 Hz. This indicates that the
neuron exhibits a better detectability for these signals.

It is noted that the output SNR can exceed the input S
not only in the presence of sinusoidal signals. Figure 3 sh
gu and g in for the case wherein the neuron is subject to
periodic pulse signal with a frequency of 70 Hz. The du
tion of the pulse is 2 ms and the amplitude is 2~as a sub-
threshold signal!. Such a signal can model visual stimuli o
the synaptic inputs from other neurons. Similar results to F
1 can be observed here. AsD increases,g in drops monotoni-
cally while gu first rises and then decreases with a maxim
aroundDm51. The inset of Fig. 3 depictsgu versusD. gu is
positive whenD.0.8 and reaches its maximum nearDc
52. Here the SNR gain can be as high as 5.1 dB since
firing can acquire a strong correlation with the pulse sign
These indicate that the SNR gain is robust to stimuli.

We have demonstrated that the detectability of a no
signal after transduction by a neuron can be better than
of the incoming signal from the environment. This is of fun
tional significance for sensory processing in neuronal s
tems. In fact, an important problem concerned with appli
bility of the SR effect is the potential possibility to increa
the SNR of a noisy signal after information transfer. Ho
ever, it was recently reported@12# that positive SNR gain can

FIG. 3. The SNR vs the noise intensityD in the case of a pulse
signal with a frequency of 70 Hz. The inset isgu vs D.
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be observed only for suprathreshold signals in a bistable
tem driven by a harmonic force and Gaussian noise.
though the response of a neuron to periodic stimuli p
noise can in some cases be approximated by periodic
driven noisy underdamped dynamics@13#, it cannot be sim-
ply viewed as an overdamped motion of a point particle in
bistable system@1#. For an underdamped bistable syste
there exist multitimescales controlled separately by intrin
damped oscillation, noise-induced transition between we
and the input periodic stimulus. The cooperation of the
effects results in the optimal response of the system, lead
to the reported intrawell SR and interwell SR@13#. Differ-
ently, for an overdamped bistable system, there exists o
interwell SR. That is, the optimal enhancement effect
switching results from the match between the noise-indu
well-to-well transitions and the periodic signal. Therefo
for the HH model, its gain behavior is largely different fro
that of overdamped bistable systems@12# due to the coexist-
ence of intrawell SR and interwell SR. Summarizing, wh
we consider a more realistic model of neurons, it is poss
to observe the SNR improvement effect even in the prese
of a sinusoidal signal. This also extends the observation
Ref. @5#.

Finally, we explore the neuronal network case wher
the neurons are globally coupled with each other and sub
to a common cosinusoidal signal and independent no
Thus, a synaptic current item gets added on the right sid
Eq. ~1! as follows:

I i
syn~ t !52 (

j 51,j Þ i

N
gsyn

N
a~ t2t j !~Vi2Vsyn

i j !u~Vj2Vth!,

~6!

with a(t2t j )[a(t8)5t8/te2t8/t. t j is the firing time of the
j th neuron when its membrane potential exceeds the fi
thresholdVth5220 mV, t52 ms is the characteristic tim
of excitatory postsynaptic potential.Vsyn

i j is the synaptic re-
versal potential between thei th and j th neurons, and its
value is randomly taken as280 or 0 mV corresponding
respectively, to the inhibitory and the excitatory couplin
gsyn is the coupling strength.u(x) is the step function with
u(x)51 if x>0 andu(x)50 if x,0. The number of neu-
rons in the network is taken asN5100. The average synapti
current is

Asyn~ t !5
1

N (
i 51

N

I i
syn~ t !. ~7!

The output of the network is defined as

I out~ t !5
1

N (
i 51

N

Ui~ t !. ~8!

The SNR forI out(t), Asyn(t), andU1(t) is simply denoted
asgo , gA , andgU . For I out(t) andAsyn(t) the input SNR is
obtained by taking an average over the input SNR of e
neuron.go , gA , andgU are the corresponding output SN
minus the input SNR.
2-3
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Figure 4~a! shows the SNR versus the noise intensityD in
the case off s570 Hz. All the curves exhibit the typica
characteristic of SR: first a rise and then a drop. Compa
with the single-neuron case, the value ofgU rises slightly. As
the mean of the responses of individual neurons can ave
out the uncorrelated parts and enhance the periodic com
nents,go andgA are much larger thangU . In addition, both
the curves are basically overlapped except for low no
sinceI out(t) andAsyn(t) exhibit nearly the same periodicity

FIG. 4. For the neuronal network case.~a! The SNR vs the noise
intensity D in the presence of a sinusoidal signal withf s570 Hz
and A51. ~b! The SNR difference vsD. gsyn is set as 1 and the
fraction of all the couplings being excitatory is 0.667.
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We have previously discussed the SR effects in a glob
coupled neuronal network based on the Hindmarsh-R
~HR! neuronal model@14#. Figure 4~b! displays the differ-
ence between the output and input SNRs. Clearly, the va
of gU also increases compared with the single-neuron c
although it still takes a large negative value for very lo
noise level.go and gA are much larger thangU and are al-
ways positive. They decrease much more slowly after
maximum is reached. Note that bothgo (gA) and go (gA)
have large values for 1,D<3. In other words, the high
output SNR and SNR gain can be acquired at the same n
level. This implies that the signal-processing capability
neurons could be largely improved by an optimal noise lev
The results also indicate that the information about in
signal can be precisely conveyed by pooling of the individ
responses.

In this paper we have investigated the possibility of SN
improvement both in the single neuron and the neural n
work cases. In the presence of a periodic sinusoidal or p
signal, the output SNR can exceed the input SNR ove
wide range of noise intensities, and such an effect is m
remarkable in the network case. The high output SNR a
SNR gain can be acquired coincidentally at optimal no
levels, and this largely contributes to signal processing. S
a discussion further verifies that noise can play a construc
role in weak signal detection and transduction of neuro
Finally, it is stressed that the conclusion obtained here a
holds true for other neuronal models, such as the HR mo
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